Development of a new 3D-Human Airway Epithelium/ Whole-blood Co-culture Model Combined with Multi-Analyte Profile (MAP) Analyses for Assessing Drug Effects

Blum M¹, Stein GM¹, Constant S², Wiszniewski L², Huang S², Mapes J³, Spain M³, Joos TO¹, Schmolz M¹

¹ EDI GmbH, Reutlingen, Germany; ² Epithelix Sàrl, Plan-Les-Ouates, Genève, Suisse ³ Rules-Based Medicine Inc., Austin, TX, USA

Background

	Cytokines	
h1-related	Th2-related	Treg-related
terferon-γ terleukin-12p40 terleukin-12p70	Interleukin-4 Interleukin-5 Interleukin-13	Interleukin-10
lonocyte/ IØ-related	Others	Interleukin 2
-CSF terleukin-1 ra	FGF-basic GM-CSF	Interleukin-3 Interleukin-7

Cancer antigens

Alpha-Fetoprotein
Cancer Antigen 19-9
Cancer Antigen 125
Carcinoembryonic Antigen
Prostatic Acid Phosphatase
PSA, Free

Th2-related mediators

Th2-related mediators

We kindly acknowledge the grant from the Project Management Agency within the German Aerospace Center (PT-DLR). DLR grant number 01GG0713

Results and Conclusions

In this newly developed co-culture model of human airway epithelial cells in combination with whole blood Betamethasone exhibited its typical, cells, strong pharmacological effect profile on both, the immune and the epithelial cells: It dose-dependently inhibited a variety of pro-inflammatory mediators, being either T helper cell type 1- (Th1), Th2-, or macrophage-associated, such as interferon (IFN)-gamma, interleukin (IL)-12p70, IL-4, -5, -13 and tumor necrosis factor (TNF)-alpha, respectively. In contrast, IL-10 as anti-inflammatory mediator was upregulated after 24h of co-culture. Furthermore, epithelial cells were cultured for another 6 days showing a dosedependent effect on e.g. the monocyte chemotactic protein-1 (MCP-1) and IL-8.

From the data presented here, it is evident that the highly complex, organo-typical co-culture model provides an excellent tool to study in vitro, under in vivo-like conditions not only the pharmacokinetics and pharmacodynamics of inhaled drugs, but also the harmful effects of toxicants that get access to the human lung.

Dr. Manfred Schmolz Aspenhaustrasse 25 D-72770 Reutlingen Germany

phone: +49 7121 434103 fax: +49 7121 491074 e-mail: info@edigmbh.de web: www.edigmbh.de

Dr. Sabine Küsters Director of Europe Operations Rules-Based Medicine Inc. Austin, TX (USA)

phone/fax: +49 211 9894232 e-mail: sabinek@rulesbasedmedicine.com web: www.rulesbasedmedicine.com

Dr. Song Huang 14 chemin des Aulx CH-1228 Plan-Les-Ouates, Genève, Suisse

phone: +41 22794 6515 fax: +41 22794 6517 e-mail: song.huang@epithelix.com web: www.epithelix.com